
Software Requirements
Specification

for

JenPile

Version 1.0 approved

Prepared by Jennifer Felton

California State Fullerton - Compilers

December 15, 2020

Table of Contents

Introduction 3

Purpose 3

Document Conventions 3

Intended Audience and Reading Suggestions 3

Product Scope 3

References 3

Overall Description 3

Product Perspective 3

Product Functions 4

User Classes and Characteristics 4

Operating Environment 4

Design and Implementation Constraints 4

External Interface Requirements 4

User Interfaces 4

Hardware Interfaces 5

Software Interfaces 5

System Features 5

Lexer 5

Parser 7

Intermediate Code Generator & Symbol Table 10

Test Files 12

Other Nonfunctional Requirements 13

Performance Requirements 13

Safety Requirements 13

Security Requirements 13

Software Quality Attributes 13

Appendix A: References 13

1. Introduction

1.1 Purpose

The purpose of this compiler project is to demonstrate knowledge of how a compiler works.
This compiler program was created for California State Fullerton’s CPSC 323 Class,
Compilers and Languages. Design specifications were given by the professor.

1.2 Document Conventions

There are no special document conventions to know about while reading.

1.3 Intended Audience and Reading Suggestions

This documentation is intended for any audience that is interested in how the compiler was
created. It gives further information into design considerations and the project specifications
from the professor. It can be read in any order, but is intended to be read in document
order.

1.4 Product Scope

The scope of JenPile is to satisfy the requirements as given by the Professor. The goal is to
make a simple compiler made up of a Lexer, Parser, and Intermediate Code Generator.
Due to coronavirus considerations, the project was shortened and different options were
given to satisfy the requirements for a completed compiler.

1.5 References

This Software Design Specification does not refer to any outside style guides, specifications
or documents. A list of references used to create the project can be found in Appendix A.

A complete copy of the project can be found at:
https://github.com/jenniferafelton/CSUF323_Compiler/

2. Overall Description

2.1 Product Perspective

JenPile is a simple compiler written in C#. It is for the CSUF Compilers and Languages
class for the Fall 2020 Semester. The compiler was written in three parts over the course of
the semester.

https://github.com/jenniferafelton/CSUF323_Compiler/

The main function of the compiler is to translate a simple set of written instructions into
machine code. This was done in three projects, the Lexer, the Parser, and Intermediate
Code Generation. JenPile has all three projects integrated into one.

2.2 Product Functions

The main function of the compiler is to translate a simple set of written instructions into
machine code. This was done in three projects, the Lexer, the Parser, and Intermediate
Code Generation. JenPile has all three projects integrated into one.

2.3 User Classes and Characteristics

JenPile is expected to be used by the professor for grading purposes. Additional users may
be individuals curious as to how a compiler works, or those interested in the construction of
a compiler. It is not a working compiler for programming purposes.

2.4 Operating Environment

JenPile can be used on any operating system. It can be ran from the jenni.exe file, which
will automatically compile the included .jen file, ShortTestCase.jen. If the project is run using
the command line, using jenni.exe -c “YourFileNameHere” will allow the user to replace
“YourFileNameHere” with any text file the user would like to compile. Including no file name
and running JenPile from the command line will allow the user to type in text to be
compiled. Below is an example of the command line.

2.5 Design and Implementation Constraints

Due to the Coronavirus and online format, the compiler project was shortened. The Parser
part of the project is only required to work for Arithmetic Expressions. The Intermediate
Code Generation section of the project only required a Symbol Table for completion.

3. External Interface Requirements

3.1 User Interfaces

The only User Interface that is used is the command line.

3.2 Hardware Interfaces

There are no Hardware Interfaces.

3.3 Software Interfaces

JenPile uses no additional Software Interfaces

4. System Features

JenPile consists of three integrated project parts. The overall design follows SOLID
programming practices to the greatest extent possible. There are also text files included for
testing.

4.1 Lexer

4.1.1 Assignment Project Specifications
To write a lexical analyzer, using a FSM for the entire lexer, or using FSM for
identifier, integer and real numbers.

The function lexer, should return a token when it is needed. The lexer should return
a record, one field for the token and another field for the actual value (lexeme) of
the token. The main program should read in a file containing the source code given
to generate tokens and write the results to an output file.

4.1.2 Design of Lexer

The Lexer varies little from the assignment specifications. It reads in a text file, or
input from the user. It processes the input through Regex expressions and a Token
dictionary to create Tokens that are created as a token type and a value. This
processing allows for the tokens to be used in the future for parsing and machine
code generation.
The Lexer is composed of the following files:

Program.cs
Uses argos to pass in the file name, if the file to compile is null, then input is
collected from the console. Prints the finished token list.

InputCollector.cs

Reads in a file, or from the Console, line by line. Places each line read in a List
structure until an empty line is reached.

TokenType.cs
Contains the token types as an enum. The Token Types are none, keyword,
identifier, separator, operator, integer, float and undefined.

Token.cs
Contains the struct for the token type, value pair

TokenDictionary.cs
Contains a Dictionary of given keywords and operators paired with their token
types. The token types are the ones identified in the given keyword and operator
list.

Lexer.cs
Using the List from the InputCollector class, for each char in each line; first it checks
for comments. If a ! is found, characters are not appended until another ! is reached.

Then the Lexer iterates through each character, appending each character to
evalLine until it matches a separator. When a separator is found, the evalLine is
checked to see if it is in the TokenDictionary. If it is not, evalLine is checked against
each Regex pattern until a match is found. Regex is a regular expression Finite
State Machine that does pattern matching for the defined patterns. The defined
pattern types are for separators, identifiers, floats and integers. If a token is not
identified, evalLine assigns it the undefined token.

Lastly, the token type and its value are paired together and added to a new List,
along with the separator and it’s token type. A list was chosen so it would be easier
to iterate backwards and forwards during the Syntax stage. The List currently prints
to the console with the Token Lexeme pair.

4.1.3 Limitations of Lexer

When read in from the console, if two identifiers are typed on two lines with no
separator, it will read them together as one lexeme.

The = sign can be both an operator and a seperator, so when used with no spaces,
it is classified as an undefined token. When space is given on both sides of the =, it
is correctly identified as an operator.

4.2 Parser

4.2.1 Assignment Project Specifications

The second assignment is to write a syntax analyzer. It can use any top-down
parser such as a RDP, a predictive recursive descent parser or a table driven
predictive parser. All grammar must be rewritten to remove left recursion.
Arithmetic expressions should be done first, then Assignment and declarations.
The Parser should print to an output file the token, lexeme, and production rules.

4.2.2 Design of Parser

The parser is designed to be a Bottom to Top Shift Reduce Parser. It starts from the
leaves of the parse tree to the root. The list from the Lexer is used as the input
buffer, and a list named theStack stores and accesses the production rules. The
stack was originally a stack, but traversing it to check for grammar quickly became
difficult.

The variable “theStack” was originally a stack. It was also a stack of strings for the
parse types, but this removed the value and token so they couldn’t be used together
on part 3 if it was needed. I also briefly considered making each token also have a
third type called parse to organize the parse types. For now the choice was made to
add the parse types to the TokenType list. There is an enum set up with the Parse
types from that attempt, though it is not used in the submitted version. It was also
debated to make a stack that consisted of a ParseType enum and a token, but that
got complicated quickly.

The Parser uses the existing Lexer as input. The list or Token - Value pairs created
in the Lexer is first passed into the driver for parsing. The following methods handle
the parsing of the pairs.

The Parser is entirely contained in Parser.cs. The Following methods are used in
implementing the Parser.

Driver:
The driver method is used to drive the reading of the Token - Value pairs. It adds a
Token at the end to designate the end of the file to be parsed. The driver skips white
spaces in parsing, and calls two functions, Shift and Reduce.

Shift:
Shift handles the adding of the tokens to the stack for processing. It also writes the
line.

Reduce:
Reduce calls three methods that do the reducing of expressions, assignments and
statements on the stack.

CheckForExpressions:
This method checks for an identifier, operator, identifier set of tokens and reduces
them to an expression. This also takes the three tokens and reduces them to one.

CheckForAssignment:
This method checks for either a keyword, identifier =, expression set of tokens, or a
identifier, =, expression set of tokens. When the correct grouping is found, it
reduces it to one token.

CheckForStatement:
This method checks if there is a statement, which would be an assignment or a
declaration with a ; at the end. The statement function is designed to be the topmost
piece that almost everything should reduce too, ending with a semicolon. This
function would eventually handle if, while and do.

PrintRule:
Print Rule prints the rules when a correct rule is found.

4.2.3 Limitations of Lexer
Rules are only printed when successfully used. This could be changed by calling
the rule method when the method checking for it is called.

A limitation brought over from the Lexer and also apparent in the parser is that
letters with no spaces in the middle, or no line break after them, are read together
into one identifier.

In the Expression function- in arithmetic expressions, an operator is used between
the two identifiers or expressions. The operator can currently include < and > , so
more logic would be needed to correctly handle what operator it is. It was also
considered that an expression can be an identifier, float or integer by itself, but that
would not be syntactically correct to just have a word, float or integer without
anything else paired with it. The choice was made to leave it as an identifier
operator identifier for simplicity.

Check for assignment operates on the limitation that an assignment operator will
always be located at the beginning of a statement, and always has an “id =
expression”, “id = float/int/id”, or “keyword id = expression/float/int or id”. It is
constricted to only look at the beginning of the list when the list is long enough to
have these tokens.

CheckForExpression does not change individual tokens to expression, since it is not
an expression if it was by itself. It would need to be assigned to something or some
operations would need to take place making it an expression.

There is no end of file token on the input string. When the input string is at the end,
that is the end of the file.

In the future, the keyword token would have to be handled differently, as the parser
uses certain keywords in different ways. Though, this could be handled by looking
at the value after sorting out the token types.

4.3 Intermediate Code Generator & Symbol Table

4.3.1 Assignment Project Specifications
The third assignment consists of Documentation and Specifications for the compiler
project, a symbol table with type checking, and one of the following options:
generating intermediate code from the grammar from the Parser, or implementing a
different approach for the Syntax Analyzer. Due to Coronavirus considerations, the
third assignment was shortened in class to consist of the documentation and
symbol table, with all other parts of the assignment being extra credit.
Documentation should include explaining approach and function, program flow and
diagrams for maximum points.

The Symbol Table should take every identifier declared in the program and place it
in a symbol table. The symbol table should hold the lexeme and a “memory
address” where it can be found. The table should be checked every time an
identifier is declared and return an error message if it is found. The symbol table
should also make sure the type matches.

4.3.2 Design of Symbol Table
Due to time limitations, no extra credit was implemented for assignment three.

The symbol table uses a Symbol struct which consists of a symbol type and an
identifier. The Symbols are then placed into the SymbolTable.The Symbol Table was
implemented as a Dictionary, since duplicate entries are not permitted. The identifier
name was used as a key, with a Symbol Type being used to identify if the identifier

is an int or a float. TokenType would not be useful in the SymbolTable, since a
symbol would consist of the keyword, identifier, and assigned value combo.
The Symbol Table was added to the Parser. Whenever an identifier token is found,
the keyword - identifier pair is converted to a Symbol. This Symbol is then added to
the SymbolTable with the pretend memory location int. Each successful add
increases the Memory address by one.

The Symbol Table is composed of the following files:

SymbolType.cs
This contains the enum for the different symbol types. For this project, only int and
float are used.

Symbol.cs
This is a struct Symbol made up of a SymbolType Keyword and a string Identifier.

SymbolTable.cs
This contains the variable for the simulated memory location. It also contains the
Symbol Table dictionary that is made up of a Symbol and an int. It contains a
method to check if the identifier is in the table. If the identifier is not in the table, it
adds the identifier and the current memory location to the table, then increments the
memory location by one. If the identifier is in the table, it outputs an error message.
There is also a method to print the current table with its symbol, identifier, and
memory location values.

Parser.cs
In the Parser.cs file, the method CheckSymbolTable is called by the Driver method
whenever an identifier is found. CheckSymbolTable checks if there is a Keyword
token before the identifier, and checks what keyword it is. If it is an int or a float, it
creates a Symbol using the keyword - identifier pair and calls the AddToTable
method from SymbolTable.

Lexer.cs
In Lexer.cs, during token creation all input is identified using Regex to determine if it
is an int or float independent of it’s declaration. The Parser.cs can check in the
method CheckForExpression if the keyword and identifier is being declared and
assigned a value. If it is assigned a value, the TokenType of the value can be
checked to see if it matches the Keyword value. If it does, then the Symbol is
syntactically correct.

4.3.3 Limitations of Symbol Table
There can be instances where the symbol can be declared and placed into the
SymbolTable, but not have a value assigned yet. The design choice was made to
only have the dictionary contain the memory address and the Symbol. If the
SymbolTable was to contain both the declared type, identifier name and current
value along with the memory location, the Symbol struct could easily be modified to
contain that.

4.5 Test Files
The following files are included in the JenPile project and were used for testing purposes, or
as example input/output files.

AssignTestCode.jen
This is a simple test file given for testing the Parser for correct grammar.

HelloWorld.jen
This is a simple file for testing the Lexer.

OutputAssignment.jen
This file was given to show the example output if the Intermediate Code Generator was
done. It was used for reference for the Symbol Table output. It was included with the project
for future reference and use.

OutputTestCase1.jen
This file was given to show the example output if the Intermediate Code Generator was
done. It was used for reference for the Symbol Table output. It was included with the project
for future reference and use.

SampleInputFile.jen
This file was given to test the Lexer and the SymbolTable.

ShortMathTest.jen
This file is for simple Parser grammar rules. It is the most basic test for the parser.

ShortTestCase.jen
This file was created for JenPile to test the Lexer and the SymbolTable.

TestArithExpressions.jen
This file was given to test Parser grammar rules.

TestCase1.jen
This file was given to test Lexer token generation

TestCaseAssignment.jen
This file was given to test the Lexer token generation.

5. Other Nonfunctional Requirements

5.1 Performance Requirements

There are no performance requirements for JenPile. No performance requirements were
given.

5.2 Safety Requirements

There are no safety consideration or requirements in using JenPile.

5.3 Security Requirements

There are security requirements for JenPile. No security requirements were given. There is
no encryption on any text. It is not recommended to enter sensitive information into JenPile.

5.4 Software Quality Attributes

JenPile is designed to be easily expanded and modified. The program is modular. Token
Types, Symbol Types, and the Token Dictionary are easy to find in the compiler, and can
be added to indefinitely.

Appendix A: References

This is a list of references that were referred to when creating JenPile:

GeeksForGeeks Shift Reduce Parser In Compiler
https://www.geeksforgeeks.org/shift-reduce-parser-compiler/

GeeksForGeeks Bottom Up or Shift Reduce Parsers
https://www.geeksforgeeks.org/bottom-up-or-shift-reduce-parsers-set-2/

Compiler Design Lecture 9 -- Operator grammar and Operator precedence parser
https://www.youtube.com/watch?v=n5UWAaw_byw&t=283s

https://www.geeksforgeeks.org/shift-reduce-parser-compiler/
https://www.geeksforgeeks.org/bottom-up-or-shift-reduce-parsers-set-2/
https://www.youtube.com/watch?v=n5UWAaw_byw&t=283s

Compiler Design Lecture 8 -- Recursive descent parser
https://www.youtube.com/watch?v=SH5F-rwWEog&t=3s

Parser and Lexer — How to Create a Compiler part 1/5 — Converting text into an Abstract
Syntax Tree
https://www.youtube.com/watch?v=eF9qWbuQLuw&t=1782s

Wikipedia: Bottom-up Parsing
https://en.wikipedia.org/wiki/Bottom-up_parsing

https://www.youtube.com/watch?v=SH5F-rwWEog&t=3s
https://www.youtube.com/watch?v=eF9qWbuQLuw&t=1782s

