
JenPile
Part 2 of Compiler Project

CS323 Documentation

Problem Statement:

The second assignment is to write a syntax analyzer. It can use any top-down
parser such as a RDP, a predictive recursive descent parser or a table driven
predictive parser. All grammar must be rewritten to remove left recursion.
Arithmetic expressions should be done first, then Assignment and
declarations. The Parser should print to an output file the token, lexeme, and
production rules.

How to Use JenPile:

With a file input:
jenni.exe -c filename
Example: jenni.exe -c HelloWorld.jen

Without a file input, to type on the console line:
jenni.exe

Sample Test Files Included:
ShortMathTest.jen
AssignTestCode.jen
TestArithExpressions.jen

Design Of Program:

The parser is designed to be a Bottom to Top Shift Reduce Parser. It starts
from the leaves of the parse tree to the root. The list from the Lexer is used as
the input buffer, and a list named theStack stores and accesses the production
rules. The stack was originally a stack, but traversing it to check for grammar
quickly became difficult.

The variable “theStack” was originally a stack. It was also a stack of strings for
the parse types, but this removed the value and token so they couldn’t be
used together on part 3 if it was needed. I also briefly considered making
each token also have a third type called parse to organize the parse types.

For now the choice was made to add the parse types to the TokenType list.
There is an enum set up with the Parse types from that attempt, though it is
not used in the submitted version. It was also debated to make a stack that
consisted of a ParseType enum and a token, but that got complicated quickly.

The Parser uses the existing Lexer as input. The list or Token - Value pairs
created in the Lexer is first passed into the driver for parsing. The following
methods handle the parsing of the pairs.

Driver:
The driver method is used to drive the reading of the Token - Value pairs. It
adds a Token at the end to designate the end of the file to be parsed. The
driver skips white spaces in parsing, and calls two functions, Shift and
Reduce.

Shift:
Shift handles the adding of the tokens to the stack for processing. It also
writes the line.

Reduce:
Reduce calls three methods that do the reducing of expressions, assignments
and statements on the stack.

CheckForExpressions:
This method checks for an identifier, operator, identifier set of tokens and
reduces them to an expression. This also takes the three tokens and reduces
them to one.

CheckForAssignment:
This method checks for either a keyword, identifier =, expression set of
tokens, or a identifier, =, expression set of tokens. When the correct grouping
is found, it reduces it to one token.

CheckForStatement:
This method checks if there is a statement, which would be an assignment or
a declaration with a ; at the end. The statement function is designed to be the
topmost piece that almost everything should reduce too, ending with a
semicolon. This function would eventually handle if, while and do.

PrintRule:
Print Rule prints the rules when a correct rule is found.

Limitations
Rules are only printed when successfully used. This could be changed by
calling the rule method when the method checking for it is called.

A limitation brought over from the Lexer and also apparent in the parser is that
letters with no spaces in the middle, or no line break after them, are read
together into one identifier.

In the Expression function- in arithmetic expressions, an operator is used
between the two identifiers or expressions. The operator can currently include
< and > , so more logic would be needed to correctly handle what operator it
is. It was also considered that an expression can be a identifier, float or integer
by itself, but that would not be syntactically correct to just have a word, float or
integer without anything else paired with it. The choice was made it leave it as
identifier operator identifier for simplicity.

Check for assignment operates on the limitation that an assignment operator
will always be located at the beginning of a statement, and always has an “id =
expression”, “id = float/int/id”, or “keyword id = expression/float/int or id”. It is
constricted to only look at the beginning of the list when the list is long enough
to have these tokens.

CheckForExpression does not change individual tokens to expression, since it
is not an expression if it was by itself. It would need to be assigned to
something or some operations would need to take place making it an
expression.

There is no end of file token on the input string. When the input string is at the
end, that is the end of the file.

In the future, the keyword token would have to be handled differently, as the
parser uses certain keywords in different ways. Though, this could be handled
by looking at the value after sorting out the token types.

Any shortcomings for each iterations

I did not implement printing to a file. It does implement printing to the monitor.
The lexer does print to a file and could be modified to print the parsing too. My

rule outputting is different as it only prints when the rule is true. There is no
error checking other than it continues along to the next token.

